【算法】80道高频算法题Python版

image1

80道高频算法题Python版

image2

80道高频算法题来源于牛客网,这些答案都经过了我验证,可以复制粘贴后提交通过:

image3

掌握这80道题,99%的测试岗位算法考试都能通过。建议收藏后反复练习。本文为Python版本答案,对于Java版本答案,请在电子书《算法挑战》目录中查看。

1、NC1 大数加法:中等

### 计算两个数之和
### @param s string字符串 表示第一个整数
### @param t string字符串 表示第二个整数
### @return string字符串
#
class Solution:
    def solve(self , s: str, t: str) -> str:
        # write code here
        res = ""
        i, j, carry = len(s) - 1, len(t) - 1, 0
        while i >= 0 or j >= 0:
            n1 = int(s[i]) if i >= 0 else 0
            n2 = int(t[j]) if j >= 0 else 0
            tmp = n1 + n2 + carry
            carry = tmp // 10
            res = str(tmp % 10) + res
            i, j = i - 1, j - 1
        return "1" + res if carry else res

2、NC3 链表中环的入口结点:中等

### -*- coding:utf-8 -*-
### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
class Solution:
    def EntryNodeOfLoop(self, pHead):
        # write code here
        slow = self.hasCycle(pHead)
        if slow == None:
            return None
        fast = pHead
        while fast != slow:
            fast = fast.next
            slow = slow.next
        return slow

    def hasCycle(self, head):
        if head == None:
            return None
        fast = head
        slow = head
        while fast != None and fast.next != None:
            fast = fast.next.next
            slow = slow.next
            if fast == slow:
                return slow
        return None

3、NC4 判断链表中是否有环:简单

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None

#
###
### @param head ListNode类
### @return bool布尔型
#
class Solution:
    def hasCycle(self , head: ListNode) -> bool:
        if not head:
            return False
        slow = head
        fast = head
        while fast != None and fast.next != None:
            fast = fast.next.next
            slow = slow.next
            if fast == slow:
                return True
        return False

4、NC6 二叉树中的最大路径和:困难

这道题的Python答案在牛客网无法通过,在力扣网能通过:

https://leetcode.cn/problems/jC7MId/

### Definition for a binary tree node.
### class TreeNode:
###     def __init__(self, val=0, left=None, right=None):
###         self.val = val
###         self.left = left
###         self.right = right
class Solution:
    def __init__(self):
        self.maxSum = float("-inf")

    def maxPathSum(self, root: TreeNode) -> int:
        def maxGain(node):
            if not node:
                return 0

            leftGain = max(maxGain(node.left), 0)
            rightGain = max(maxGain(node.right), 0)

            priceNewpath = node.val + leftGain + rightGain
            self.maxSum = max(self.maxSum, priceNewpath)

            return node.val + max(leftGain, rightGain)

        maxGain(root)
        return self.maxSum

5、NC11 将升序数组转化为平衡二叉搜索树:简单

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param nums int整型一维数组
### @return TreeNode类
#
class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> TreeNode:
        # write code here
        if not nums:
            return None
        n = len(nums)
        k = n // 2
        t = TreeNode(nums[k])
        if n == 1:
            return t
        t.left = self.sortedArrayToBST(nums[:k])
        t.right = self.sortedArrayToBST(nums[k+1:])
        return t

6、NC12 重建二叉树:中等

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param preOrder int整型一维数组
### @param vinOrder int整型一维数组
### @return TreeNode类
#
class Solution:
    def reConstructBinaryTree(self , preOrder: List[int], vinOrder: List[int]) -> TreeNode:
        # write code here
        if not preOrder:
            return None
        root = TreeNode(preOrder[0])
        tmp = vinOrder.index(preOrder[0])
        root.left = self.reConstructBinaryTree(preOrder[1:tmp+1], vinOrder[:tmp])
        root.right = self.reConstructBinaryTree(preOrder[tmp+1:], vinOrder[tmp+1:])
        return root

7、NC14 按之字形顺序打印二叉树:中等

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param pRoot TreeNode类
### @return int整型二维数组
#
import queue

class Solution:
    def Print(self , pRoot: TreeNode) -> List[List[int]]:
        # write code here
        head = pRoot
        res = []
        if not head:
            return res
        temp = queue.Queue()
        temp.put(head)
        flag = True
        while not temp.empty():
            row = []
            flag = not flag
            n = temp.qsize()
            for i in range(n):
                p = temp.get()
                row.append(p.val)
                if p.left:
                    temp.put(p.left)
                if p.right:
                    temp.put(p.right)
            if flag:
                row = row[::-1]
            res.append(row)
        return res

8、NC15 求二叉树的层序遍历:中等

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param root TreeNode类
### @return int整型二维数组
#

import queue

class Solution:
    def levelOrder(self , root: TreeNode) -> List[List[int]]:
        # write code here
        res = []
        if not root:
            return res
        q = queue.Queue()
        q.put(root)
        cur = None
        while not q.empty():
            row = []
            n = q.qsize()
            for i in range(n):
                cur = q.get()
                row.append(cur.val)
                if cur.left:
                    q.put(cur.left)
                if cur.right:
                    q.put(cur.right)
            res.append(row)
        return res

9、NC16 对称的二叉树:简单

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param pRoot TreeNode类
### @return bool布尔型
#
class Solution:
    def recursion(self, root1: TreeNode, root2: TreeNode):
        if not root1 and not root2:
            return True
        if not root1 or not root2 or root1.val != root2.val:
            return False
        return self.recursion(root1.left, root2.right) and self.recursion(root1.right, root2.left)

    def isSymmetrical(self , pRoot: TreeNode) -> bool:
        # write code here
        return self.recursion(pRoot, pRoot)

10、NC17 最长回文子串:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param A string字符串
### @return int整型
#
class Solution:
    def func(self, s: str, begin: int, end: int) -> int:
        while begin >= 0 and end < len(s) and s[begin] == s[end]:
            begin -= 1
            end += 1
        return end - begin - 1

    def getLongestPalindrome(self , A: str) -> int:
        # write code here
        maxlen = 1
        for i in range(len(A) - 1):
            maxlen = max(maxlen, max(self.func(A, i, i), self.func(A, i, i + 1)))
        return maxlen

11、NC18 顺时针旋转矩阵:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param mat int整型二维数组
### @param n int整型
### @return int整型二维数组
#
class Solution:
    def rotateMatrix(self , mat: List[List[int]], n: int) -> List[List[int]]:
        # write code here
        for i in range(n):
            for j in range(i):
                mat[i][j], mat[j][i] = mat[j][i], mat[i][j]
        for i in range(n):
            mat[i].reverse()
        return mat

12、NC19 连续子数组的最大和:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param array int整型一维数组
### @return int整型
#
class Solution:
    def FindGreatestSumOfSubArray(self , array: List[int]) -> int:
        # write code here
        dp = [0 for i in range(len(array))]
        dp[0] = array[0]
        maxsum = dp[0]
        for i in range(1, len(array)):
            dp[i] = max(dp[i - 1] + array[i], array[i])
            maxsum = max(maxsum, dp[i])
        return maxsum

13、NC22 合并两个有序的数组:简单

#
###
### @param A int整型一维数组
### @param B int整型一维数组
### @return void
#
class Solution:
    def merge(self , A, m, B, n):
        # write code here
        i = m - 1
        j = n - 1
        p = m + n - 1
        while i >= 0 and j >= 0:
            if A[i] > B[j]:
                A[p] = A[i]
                p -= 1
                i -= 1
            else:
                A[p] = B[j]
                p -= 1
                j -= 1
        while j >= 0:
            A[p] = B[j]
            p -= 1
            j -= 1

14、NC24 删除有序链表中重复的元素-II:中等

跟简单的区别:要求重复元素全部删除

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param head ListNode类
### @return ListNode类
#
class Solution:
    def deleteDuplicates(self , head: ListNode) -> ListNode:
        # write code here
        if not head:
            return None
        res = ListNode(0)
        res.next = head
        cur = res
        while cur.next and cur.next.next:
            if cur.next.val == cur.next.next.val:
                temp = cur.next.val
                while cur.next != None and cur.next.val == temp:
                    cur.next = cur.next.next
            else:
                cur = cur.next
        return res.next

15、NC25 删除有序链表中重复的元素-I:简单

跟中等的区别:要求重复元素保留一个

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head ListNode类
### @return ListNode类
#
class Solution:
    def deleteDuplicates(self, head: ListNode) -> ListNode:
        # write code here
        if not head:
            return None
        cur = head
        while cur and cur.next:
            if cur.val == cur.next.val:
                cur.next = cur.next.next
            else:
                cur = cur.next
        return head

16、NC26 括号生成:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param n int整型
### @return string字符串一维数组
#
class Solution:
    def recursion(self, left: int, right: int, temp: str, res: List[str], n: int):
        if left == n and right == n:
            res.append(temp)
            return
        if left < n:
            self.recursion(left + 1, right, temp + "(", res, n)
        if right < n and left > right:
            self.recursion(left, right + 1, temp + ")", res, n)

    def generateParenthesis(self , n: int) -> List[str]:
        # write code here
        res = list()
        temp = str()
        self.recursion(0, 0, temp, res, n)
        return res

17、NC27 集合的所有子集(一):中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param S int整型一维数组
### @return int整型二维数组
#
class Solution:
    def subsets(self , S: List[int]) -> List[List[int]]:
        # write code here
        if not S:
            return [[]]
        res = []

        def dfs(dummy, tmp):
            res.append(tmp[:])
            for i in range(dummy, len(S)):
                tmp.append(S[i])
                dfs(i + 1, tmp)
                tmp.pop()

        dfs(0, [])
        return res

18、NC28 最小覆盖子串:困难

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param S string字符串
### @param T string字符串
### @return string字符串
#
class Solution:
    def minWindow(self, S: str, T: str) -> str:
        # write code here
        cnt = len(S) + 1
        hash = dict()
        for i in range(len(T)):
            if T[i] in hash:
                hash[T[i]] -= 1
            else:
                hash[T[i]] = -1
        slow = 0
        fast = 0
        left = -1
        right = -1
        while fast < len(S):
            c = S[fast]
            if c in hash:
                hash[c] += 1
            while Solution.check(self, hash):
                if cnt > fast - slow + 1:
                    cnt = fast - slow + 1
                    left = slow
                    right = fast
                c = S[slow]
                if c in hash:
                    hash[c] -= 1
                slow += 1
            fast += 1
        if left == -1:
            return ""
        return S[left : right + 1]

    def check(self, hash):
        for key, value in hash.items():
            if value < 0:
                return False
        return True

19、NC30 缺失的第一个正整数:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param nums int整型一维数组
### @return int整型
#
class Solution:
    def minNumberDisappeared(self , nums: List[int]) -> int:
        # write code here
        n = len(nums)
        mp = dict()
        for i in range(n):
            if nums[i] in mp:
                mp[nums[i]] += 1
            else:
                mp[nums[i]] = 1
        res = 1
        while res in mp:
            res += 1
        return res

20、NC31 第一个只出现一次的字符:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param str string字符串
### @return int整型
#
class Solution:
    def FirstNotRepeatingChar(self , str: str) -> int:
        # write code here
        mp = dict()
        for i in str:
            if i in mp:
                mp[i] += 1
            else:
                mp[i] = 1
        for i in range(len(str)):
            if mp[str[i]] == 1:
                return i
        return -1

21、NC33 合并两个排序的链表:简单

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param pHead1 ListNode类
### @param pHead2 ListNode类
### @return ListNode类
#
class Solution:
    def Merge(self , pHead1: ListNode, pHead2: ListNode) -> ListNode:
        # write code here
        if pHead1 == None:
            return pHead2
        if pHead2 == None:
            return pHead1
        head = ListNode(0)
        cur = head
        while pHead1 and pHead2:
            if pHead1.val <= pHead2.val:
                cur.next = pHead1
                pHead1 = pHead1.next
            else:
                cur.next = pHead2
                pHead2 = pHead2.next
            cur = cur.next
        if pHead1:
            cur.next = pHead1
        else:
            cur.next = pHead2
        return head.next

22、NC35 编辑距离(二):困难

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### min edit cost
### @param str1 string字符串 the string
### @param str2 string字符串 the string
### @param ic int整型 insert cost
### @param dc int整型 delete cost
### @param rc int整型 replace cost
### @return int整型
#
class Solution:
    def minEditCost(self, str1: str, str2: str, ic: int, dc: int, rc: int) -> int:
        # write code here
        dp = [[0 for _ in range(len(str2) + 1)] for _ in range(len(str1) + 1)]
        for i in range(1, len(str2) + 1):
            dp[0][i] = dp[0][i - 1] + ic
        for i in range(1, len(str1) + 1):
            dp[i][0] = dp[i - 1][0] + dc

        for i in range(1, len(str1) + 1):
            for j in range(1, len(str2) + 1):
                if str1[i - 1] == str2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j - 1] + rc, dp[i][j - 1] + ic, dp[i - 1][j] + dc)
        return dp[-1][-1]

23、NC36 在两个长度相等的排序数组中找到上中位数:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### find median in two sorted array
### @param arr1 int整型一维数组 the array1
### @param arr2 int整型一维数组 the array2
### @return int整型
#
class Solution:
    def findMedianinTwoSortedAray(self , arr1: List[int], arr2: List[int]) -> int:
        # write code here
        p1, p2 = 0, 0
        ans = 0
        for i in range(len(arr1)):
            if arr1[p1] <= arr2[p2]:
                ans = arr1[p1]
                p1 += 1
            else:
                ans = arr2[p2]
                p2 += 1
        return ans

24、NC37 合并区间:中等

from functools import cmp_to_key


### class Interval:
###     def __init__(self, a=0, b=0):
###         self.start = a
###         self.end = b
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param intervals Interval类一维数组
### @return Interval类一维数组
#
class Solution:
    def merge(self, intervals: List[Interval]) -> List[Interval]:
        # write code here
        res = list()
        if len(intervals) == 0:
            return res
        intervals.sort(key=cmp_to_key(lambda a, b: a.start - b.start))
        res.append(intervals[0])
        for i in range(len(intervals)):
            if intervals[i].start <= res[-1].end:
                res[-1].end = max(res[-1].end, intervals[i].end)
            else:
                res.append(intervals[i])
        return res

25、NC40 链表相加(二):中等

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head1 ListNode类
### @param head2 ListNode类
### @return ListNode类
#
class Solution:
    # 反转链表
    def reverseList(self, pHead: ListNode):
        if pHead == None:
            return None
        cur = pHead
        pre = None
        while cur:
            # 断开链表,要记录后续一个
            temp = cur.next
            # 当前的next指向前一个
            cur.next = pre
            # 前一个更新为当前
            pre = cur
            # 当前更新为刚刚记录的后一个
            cur = temp
        return pre

    def addInList(self, head1: ListNode, head2: ListNode) -> ListNode:
        # 任意一个链表为空,返回另一个
        if head1 == None:
            return head2
        if head2 == None:
            return head1
        # 反转两个链表
        head1 = self.reverseList(head1)
        head2 = self.reverseList(head2)
        # 添加表头
        res = ListNode(-1)
        head = res
        # 进位符号
        carry = 0
        # 只要某个链表还有或者进位还有
        while head1 != None or head2 != None or carry != 0:
            # 链表不为空则取其值
            val1 = 0 if head1 == None else head1.val
            val2 = 0 if head2 == None else head2.val
            # 相加
            temp = val1 + val2 + carry
            # 获取进位
            carry = (int)(temp / 10)
            temp %= 10
            # 添加元素
            head.next = ListNode(temp)
            head = head.next
            # 移动下一个
            if head1:
                head1 = head1.next
            if head2:
                head2 = head2.next
        # 结果反转回来
        return self.reverseList(res.next)

26、NC41 最长无重复子数组:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param arr int整型一维数组 the array
### @return int整型
#
class Solution:
    def maxLength(self, arr: List[int]) -> int:
        # 哈希表记录窗口内非重复的数字
        mp = dict()
        res = 0
        left = 0
        # 设置窗口左右边界
        for right in range(len(arr)):
            if arr[right] in mp:
                # 窗口右移进入哈希表统计出现次数
                mp[arr[right]] += 1
            else:
                mp[arr[right]] = 1
            # 出现次数大于1,则窗口内有重复
            while mp[arr[right]] > 1:
                # 窗口左移,同时减去该数字的出现次数
                mp[arr[left]] -= 1
                left += 1
            # 维护子数组长度最大值
            res = max(res, right - left + 1)
        return res

27、NC42 有重复项数字的全排列:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param num int整型一维数组
### @return int整型二维数组
#
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param arr int整型一维数组 the array
### @return int整型
#
class Solution:
    def recursion(
        self, res: List[List[int]], num: List[int], temp: List[int], vis: List[int]
    ):
        # 临时数组满了加入输出
        if len(temp) == len(num):
            res.append(temp.copy())
            return
        # 遍历所有元素选取一个加入
        for i in range(len(num)):
            # 如果该元素已经被加入了则不需要再加入了
            if vis[i] == 1:
                continue
            if i > 0 and num[i - 1] == num[i] and not vis[i - 1]:
                # 当前的元素num[i]与同一层的前一个元素num[i-1]相同且num[i-1]已经用过了
                continue
            # 标记为使用过
            vis[i] = 1
            # 加入数组
            temp.append(num[i])
            self.recursion(res, num, temp, vis)
            # 回溯
            vis[i] = 0
            temp.pop()

    def permuteUnique(self, num: List[int]) -> List[List[int]]:
        # 先按字典序排序
        num.sort()
        # 标记每个位置的元素是否被使用过
        vis = [0] * len(num)
        res = list(list())
        temp = list()
        # 递归获取
        self.recursion(res, num, temp, vis)
        return res

28、NC44 通配符匹配:困难

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
###
### @param s string字符串
### @param p string字符串
### @return bool布尔型
#
class Solution:
    def isMatch(self , s: str, p: str) -> bool:
        # write code here
        row = len(s)
        col = len(p)
        dp = [[False for _ in range(col + 1)] for _ in range(row + 1)]
        dp[0][0] = True
        for j in range(1, col + 1):
            if dp[0][j - 1]:
                if p[j - 1] == "*":
                    dp[0][j] = True
                else:
                    break
        for i in range(0, row):
            for j in range(0, col):
                if p[j] == s[i] or p[j] == "?":
                    dp[i + 1][j + 1] = dp[i][j]
                elif p[j] == "*":
                    dp[i + 1][j + 1] = dp[i][j] or dp[i + 1][j] or dp[i][j + 1]
        return dp[row][col]

29、NC45 实现二叉树先序,中序和后序遍历:中等

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param root TreeNode类 the root of binary tree
### @return int整型二维数组
#
class Solution:
    def threeOrders(self, root: TreeNode) -> List[List[int]]:
        # write code here
        self.res = [[], [], []]
        self.dfs(root)
        return self.res

    def dfs(self, root):
        if not root:
            return
        self.res[0].append(root.val)
        self.dfs(root.left)
        self.res[1].append(root.val)
        self.dfs(root.right)
        self.res[2].append(root.val)
        return

30、NC46 加起来和为目标值的组合(二):中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param num int整型一维数组
### @param target int整型
### @return int整型二维数组
#
class Solution:
    def combinationSum2(self, num: List[int], target: int) -> List[List[int]]:
        # write code here
        """
        回溯法
        1.去重(好好理解一下)
        2.剪枝(不剪枝会超时)
        """
        result = []
        if not num:
            return result
        new_num = sorted(num)
        self.backtracking(new_num, target, 0, 0, [], result)
        return result

    def backtracking(self, num, target, cur, begin, arr, result):
        """
        num: 入参数组列表
        target:目标值
        cur:当前值
        begin:开始指针
        arr:临时存储数组
        result:满足条件的组合
        """
        if cur >= target:
            if cur == target:
                result.append(list(arr))
            return result
        for i in range(begin, len(num)):
            if i > begin and num[i] == num[i - 1]:  # 去重
                continue
            # 减枝
            arr.append(num[i])
            self.backtracking(num, target, cur + num[i], i + 1, arr, result)
            arr.pop(-1)
        return result

31、NC49 最长的括号子串:困难

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param s string字符串
### @return int整型
#
class Solution:
    def longestValidParentheses(self, s: str) -> int:
        res = 0
        # 记录上一次连续括号结束的位置
        start = -1
        st = []
        for i in range(len(s)):
            # 左括号入栈
            if s[i] == "(":
                st.append(i)
            # 右括号
            else:
                # 如果右括号时栈为空,不合法,设置为结束位置
                if len(st) == 0:
                    start = i
                else:
                    # 弹出左括号
                    st.pop()
                    # 栈中还有左括号,说明右括号不够,减去栈顶位置就是长度
                    if len(st) != 0:
                        res = max(res, i - st[-1])
                    # 栈中没有括号,说明左右括号行号,减去上一次结束的位置就是长度
                    else:
                        res = max(res, i - start)
        return res

32、NC50 链表中的节点每k个一组翻转:中等

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head ListNode类
### @param k int整型
### @return ListNode类
#
class Solution:
    def reverseKGroup(self, head: ListNode, k: int) -> ListNode:
        # 找到每次翻转的尾部
        tail = head
        # 遍历k次到尾部
        for i in range(0, k):
            # 如果不足k到了链表尾,直接返回,不翻转
            if tail == None:
                return head
            tail = tail.next
        # 翻转时需要的前序和当前节点
        pre = None
        cur = head
        # 在到达当前段尾节点前
        while cur != tail:
            # 翻转
            temp = cur.next
            cur.next = pre
            pre = cur
            cur = temp
        # 当前尾指向下一段要翻转的链表
        head.next = self.reverseKGroup(tail, k)
        return pre

33、NC51 合并k个已排序的链表:困难

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param lists ListNode类一维数组
### @return ListNode类
#
import sys

### 设置递归深度
sys.setrecursionlimit(100000)


class Solution:
    # 两个有序链表合并函数
    def Merge2(self, pHead1: ListNode, pHead2: ListNode) -> ListNode:
        # 一个已经为空了,直接返回另一个
        if pHead1 == None:
            return pHead2
        if pHead2 == None:
            return pHead1
        # 加一个表头
        head = ListNode(0)
        cur = head
        # 两个链表都要不为空
        while pHead1 and pHead2:
            # 取较小值的节点
            if pHead1.val <= pHead2.val:
                cur.next = pHead1
                # 只移动取值的指针
                pHead1 = pHead1.next
            else:
                cur.next = pHead2
                # 只移动取值的指针
                pHead2 = pHead2.next
            # 指针后移
            cur = cur.next
        # 哪个链表还有剩,直接连在后面
        if pHead1:
            cur.next = pHead1
        else:
            cur.next = pHead2
        # 返回值去掉表头
        return head.next

    # 划分合并区间函数
    def divideMerge(self, lists: List[ListNode], left: int, right: int) -> ListNode:
        if left > right:
            return None
        # 中间一个的情况
        elif left == right:
            return lists[left]
        # 从中间分成两段,再将合并好的两段合并
        mid = (int)((left + right) / 2)
        return self.Merge2(
            self.divideMerge(lists, left, mid), self.divideMerge(lists, mid + 1, right)
        )

    def mergeKLists(self, lists: List[ListNode]) -> ListNode:
        # k个链表归并排序
        return self.divideMerge(lists, 0, len(lists) - 1)

34、NC52 有效括号序列:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param s string字符串
### @return bool布尔型
#
class Solution:
    def isValid(self, s: str) -> bool:
        # 辅助栈
        st = []
        # 遍历字符串
        for i, char in enumerate(s):
            # 遇到左小括号
            if char == "(":
                # 期待遇到右小括号
                st.append(")")
            # 遇到左中括号
            elif char == "[":
                # 期待遇到右中括号
                st.append("]")
            # 遇到左打括号
            elif char == "{":
                # 期待遇到右打括号
                st.append("}")
            # 必须有左括号的情况下才能遇到右括号
            elif len(st) == 0:
                return False
            # 右括号匹配则弹出
            elif st[-1] == char:
                st.pop()
        # 栈中是否还有元素
        return len(st) == 0

35、NC53 删除链表的倒数第n个节点:中等

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head ListNode类
### @param n int整型
### @return ListNode类
#
class Solution:
    def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode:
        # 添加表头
        res = ListNode(-1)
        res.next = head
        # 当前节点
        cur = head
        # 前序节点
        pre = res
        fast = head
        # 快指针先行n步
        while n:
            fast = fast.next
            n = n - 1
        # 快慢指针同步,快指针到达末尾,慢指针就到了倒数第n个位置
        while fast:
            fast = fast.next
            pre = cur
            cur = cur.next
        # 删除该位置的节点
        pre.next = cur.next
        # 返回去掉头
        return res.next

36、NC54 三数之和:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param num int整型一维数组
### @return int整型二维数组
#
class Solution:
    def threeSum(self, num: List[int]) -> List[List[int]]:
        res = list(list())
        n = len(num)
        # 不够三元组
        if n < 3:
            return res
        # 排序
        num.sort()
        for i in range(n - 2):
            if i != 0 and num[i] == num[i - 1]:
                continue
            # 后续的收尾双指针
            left = i + 1
            right = n - 1
            # 设置当前数的负值为目标
            target = -num[i]
            while left < right:
                # 双指针指向的二值相加为目标,则可以与num[i]组成0
                if num[left] + num[right] == target:
                    res.append([num[i], num[left], num[right]])
                    while left + 1 < right and num[left] == num[left + 1]:
                        # 去重
                        left += 1
                    while right - 1 > left and num[right] == num[right - 1]:
                        # 去重
                        right -= 1
                    # 双指针向中间收缩
                    left += 1
                    right -= 1
                # 双指针指向的二值相加大于目标,右指针向左
                elif num[left] + num[right] > target:
                    right -= 1
                # 双指针指向的二值相加小于目标,左指针向右
                else:
                    left += 1
        return res

37、NC55 最长公共前缀:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param strs string字符串一维数组
### @return string字符串
#
class Solution:
    def longestCommonPrefix(self, strs: List[str]) -> str:
        n = len(strs)
        # 空字符串数组
        if n == 0:
            return ""
        # 遍历第一个字符串的长度
        for i in range(len(strs[0])):
            temp = strs[0][i]
            # 遍历后续的字符串
            for j in range(1, n):
                # 比较每个字符串该位置是否和第一个相同
                if i == len(strs[j]) or strs[j][i] != temp:
                    # 不相同则结束
                    return strs[0][0:i]
        # 后续字符串有整个字一个字符串的前缀
        return strs[0]

38、NC57 反转数字:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param x int整型
### @return int整型
#
class Solution:
    def reverse(self, x):
        # write code here
        x = str(x)
        if x[0] == "-":
            a = int("-" + x[1:][::-1])
        else:
            a = int(x[::-1])
        return a if -2**31 < a < 2**31-1 else 0

39、NC60 判断一棵二叉树是否为搜索二叉树和完全二叉树:中等

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param root TreeNode类 the root
### @return bool布尔型一维数组
#
class Solution:
    def judgeIt(self, root: TreeNode) -> List[bool]:

        from dataclasses import dataclass

        @dataclass
        class Info:
            mx: int  # 整棵树的最大值
            mi: int  # 整棵树的最小值
            height: int  # 树的高度
            is_bst: bool  # 是否搜索二叉树
            is_full: bool  # 是否满二叉树
            is_cbt: bool  # 是否完全二叉树

        def dfs(x):
            if not x:
                return Info(float("-inf"), float("inf"), 0, True, True, True)

            l, r = dfs(x.left), dfs(x.right)
            # 使用左右子树的信息得到当前节点的信息
            mx = max(x.val, r.mx)
            mi = min(x.val, l.mi)
            height = max(l.height, r.height) + 1
            is_bst = l.is_bst and r.is_bst and l.mx < x.val < r.mi
            is_full = l.is_full and r.is_full and l.height == r.height
            is_cbt = (
                is_full
                or l.is_full
                and r.is_full
                and l.height - 1 == r.height
                or l.is_full
                and r.is_cbt
                and l.height == r.height
                or l.is_cbt
                and r.is_full
                and l.height - 1 == r.height
            )

            return Info(mx, mi, height, is_bst, is_full, is_cbt)

        info = dfs(root)
        return info.is_bst, info.is_cbt

40、NC61 两数之和:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param numbers int整型一维数组
### @param target int整型
### @return int整型一维数组
#
class Solution:
    def twoSum(self, numbers: List[int], target: int) -> List[int]:
        res = []
        # 创建哈希表,两元组分别表示值、下标
        hash = dict()
        # 在哈希表中查找target-numbers[i]
        for i in range(len(numbers)):
            temp = target - numbers[i]
            # 若是没找到,将此信息计入哈希表
            if temp not in hash:
                hash[numbers[i]] = i
            else:
                # 哈希表中记录的是之前的数字,所以该索引比当前小
                res.append(hash[temp] + 1)
                res.append(i + 1)
                break
        return res

41、NC62 判断是不是平衡二叉树:简单

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param pRoot TreeNode类
### @return bool布尔型
#
class Solution:
    # 计算该子树深度函数
    def deep(self, root: TreeNode):
        if not root:
            return 0
        # 递归算左右子树的深度
        left = self.deep(root.left)
        right = self.deep(root.right)
        # 子树最大深度加上自己
        return left + 1 if left > right else right + 1

    def IsBalanced_Solution(self, pRoot: TreeNode) -> bool:
        # 空树为平衡二叉树
        if not pRoot:
            return True
        left = self.deep(pRoot.left)
        right = self.deep(pRoot.right)
        # 左子树深度减去右子树相差绝对值大于1
        if left - right > 1 or left - right < -1:
            return False
        # 同时,左右子树还必须是平衡的
        return self.IsBalanced_Solution(pRoot.left) and self.IsBalanced_Solution(
            pRoot.right
        )

42、NC63 扑克牌顺子:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param numbers int整型一维数组
### @return bool布尔型
#
class Solution:
    def IsContinuous(self, numbers: List[int]) -> bool:
        hash = dict()
        # 设置顺子上下界
        max = 0
        min = 13
        # 遍历牌
        for i in range(len(numbers)):
            if numbers[i] > 0:
                # 顺子不能重复
                if numbers[i] in hash:
                    return False
                else:
                    # 将新牌加入哈希表
                    hash[numbers[i]] = i
                    # 更新上下界
                    if numbers[i] >= max:
                        max = numbers[i]
                    if numbers[i] <= min:
                        min = numbers[i]
        # 如果两张牌大于等于5,剩下三张牌无论如何也补不齐
        if (max - min) >= 5:
            return False
        else:
            return True

43、NC65 斐波那契数列:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param n int整型
### @return int整型
#
class Solution:
    def Fibonacci(self, n):
        # write code here
        # 斐波拉契数的边界条件: F(0)=0 和 F(1)=1
        if n < 2:
            return n
        else:
            a, b = 0, 1
            for i in range(n - 1):
                a, b = b, a + b  # 状态转移方程,每次滚动更新数组

            return b

44、NC66 两个链表的第一个公共结点:简单

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None

#
#
### @param pHead1 ListNode类
### @param pHead2 ListNode类
### @return ListNode类
#
class Solution:
    def FindFirstCommonNode(self, pHead1, pHead2):
        # write code here
        # 首先判断两个链表是否为空
        if pHead1 is None or pHead2 is None:
            return None
        # 定义链表1 的集合
        set_A = set()
        node1, node2 = pHead1, pHead2  # 定义两个节点
        # 遍历链表 1 ,把每个节点加入集合中
        while node1:
            set_A.add(node1)
            node1 = node1.next
        # 遍历链表2 看当前节点是否在 集合中;如果存在,当前节点就是要找的第一个公共节点;否则继续比较下一个节点。
        # 这里还要注意,如果遍历完链表 B,发现所有节点都不在集合中,则说明两个链表不相交,返回None。
        while node2:
            if node2 in set_A:
                return node2
            node2 = node2.next
        return None

45、NC68 跳台阶:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param number int整型
### @return int整型
#
class Solution:
    def jumpFloor(self, number: int) -> int:
        # 从0开始,第0项是1,第一项是1
        if number <= 1:
            return 1
        res = 0
        a = 1
        b = 1
        # 初始化的时候把a=1,b=1
        for i in range(2, number + 1):
            # 第三项开始是前两项的和,然后保留最新的两项,更新数据相加
            res = a + b
            a = b
            b = res
        return res

46、NC70 单链表的排序:中等

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head ListNode类 the head node
### @return ListNode类
#
class Solution:
    # 合并两段有序链表
    def merge(self, pHead1: ListNode, pHead2: ListNode):
        # 一个已经为空了,直接返回另一个
        if pHead1 == None:
            return pHead2
        if pHead2 == None:
            return pHead1
        # 加一个表头
        head = ListNode(0)
        cur = head
        # 两个链表都要不为空
        while pHead1 and pHead2:
            # 取较小值的节点
            if pHead1.val <= pHead2.val:
                cur.next = pHead1
                # 只移动取值的指针
                pHead1 = pHead1.next
            else:
                cur.next = pHead2
                # 只移动取值的指针
                pHead2 = pHead2.next
            # 指针后移
            cur = cur.next
        # 哪个链表还有剩,直接连在后面
        if pHead1:
            cur.next = pHead1
        else:
            cur.next = pHead2
        # 返回值去掉表头
        return head.next

    def sortInList(self, head):
        # 链表为空或者只有一个元素,直接就是有序的
        if head == None or head.next == None:
            return head
        left = head
        mid = head.next
        right = head.next.next
        # 右边的指针到达末尾时,中间的指针指向该段链表的中间
        while right and right.next:
            left = left.next
            mid = mid.next
            right = right.next.next
        # 左边指针指向左段的左右一个节点,从这里断开
        left.next = None
        # 分成两段排序,合并排好序的两段
        return self.merge(self.sortInList(head), self.sortInList(mid))

47、NC72 二叉树的镜像:简单

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param pRoot TreeNode类
### @return TreeNode类
#
class Solution:
    def Mirror(self, pRoot: TreeNode) -> TreeNode:
        # 空树返回
        if not pRoot:
            return None
        # 先递归子树
        left = self.Mirror(pRoot.left)
        right = self.Mirror(pRoot.right)
        # 交换
        pRoot.left = right
        pRoot.right = left
        return pRoot

48、NC73 数组中出现次数超过一半的数字:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param numbers int整型一维数组
### @return int整型
#
class Solution:
    def MoreThanHalfNum_Solution(self, numbers: List[int]) -> int:
        # 无序哈希表统计每个数字出现的次数
        mp = dict()
        # 遍历数组
        for i in range(len(numbers)):
            if numbers[i] in mp:
                # 哈希表中相应数字个数加1
                mp[numbers[i]] += 1
            else:
                mp[numbers[i]] = 1
            # 一旦有个数大于长度一半的情况即可返回
            if mp[numbers[i]] > (int)(len(numbers) / 2):
                return numbers[i]
        return 0

49、NC74 数字在升序数组中出现的次数:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param nums int整型一维数组
### @param k int整型
### @return int整型
#
class Solution:
    # 二分查找
    def bisearch(self, data: List[int], k: float) -> int:
        left = 0
        right = len(data) - 1
        # 二分左右界
        while left <= right:
            mid = (left + right) // 2
            if data[mid] < k:
                left = mid + 1
            elif data[mid] > k:
                right = mid - 1
        return left

    def GetNumberOfK(self, data: List[int], k: int) -> int:
        # 分别查找k+0.5和k-0.5应该出现的位置,中间的部分就全是k
        return self.bisearch(data, k + 0.5) - self.bisearch(data, k - 0.5)

50、NC76 用两个栈实现队列:简单

### -*- coding:utf-8 -*-
class Solution:
    def __init__(self):
        self.stack1 = []
        self.stack2 = []

    def push(self, node):
        self.stack1.append(node)

    def pop(self):
        # 将第一个栈中内容弹出放入第二个栈中
        while self.stack1:
            self.stack2.append(self.stack1.pop())
        # 第二个栈栈顶就是最先进来的元素,即队首
        res = self.stack2.pop()
        # 再将第二个栈的元素放回第一个栈
        while self.stack2:
            self.stack1.append(self.stack2.pop())
        return res

51、NC78 反转链表:简单

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head ListNode类
### @return ListNode类
#
class Solution:
    # 返回ListNode
    def ReverseList(self, pHead):
        # write code here
        pre = None
        head = pHead
        while head:
            temp = head.next
            head.next = pre
            pre = head
            head = temp
        return pre

52、NC82 滑动窗口的最大值:困难

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param num int整型一维数组
### @param size int整型
### @return int整型一维数组
#
class Solution:
    def maxInWindows(self, num: List[int], size: int) -> List[int]:
        res = []
        # 窗口大于数组长度的时候,返回空
        if size <= len(num) and size != 0:
            from collections import deque

            # 双向队列
            dq = deque()
            # 先遍历一个窗口
            for i in range(size):
                # 去掉比自己先进队列的小于自己的值
                while len(dq) != 0 and num[dq[-1]] < num[i]:
                    dq.pop()
                dq.append(i)
            # 遍历后续数组元素
            for i in range(size, len(num)):
                res.append(num[dq[0]])
                while len(dq) != 0 and dq[0] < (i - size + 1):
                    # 弹出窗口移走后的值
                    dq.popleft()
                # 加入新的值前,去掉比自己先进队列的小于自己的值
                while len(dq) != 0 and num[dq[-1]] < num[i]:
                    dq.pop()
                dq.append(i)
            res.append(num[dq[0]])
        return res

53、NC86 矩阵元素查找:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param mat int整型二维数组
### @param n int整型
### @param m int整型
### @param x int整型
### @return int整型一维数组
#
class Solution:
    def findElement(self, mat: List[List[int]], n: int, m: int, x: int) -> List[int]:
        # write code here
        i = n - 1
        j = 0
        while i >= 0 and j < m:
            if mat[i][j] == x:
                return [i, j]
            elif x < mat[i][j]:
                i -= 1
            elif x > mat[i][j]:
                j += 1

54、NC89 字符串变形:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param s string字符串
### @param n int整型
### @return string字符串
#
class Solution:
    def trans(self, s: str, n: int) -> str:
        if n == 0:
            return s
        res = ""
        for i in range(n):
            # 大小写转换
            if s[i] <= "Z" and s[i] >= "A":
                res += chr(ord(s[i]) - ord("A") + ord("a"))
            elif s[i] >= "a" and s[i] <= "z":
                res += chr(ord(s[i]) - ord("a") + ord("A"))
            else:
                # 空格直接复制
                res += s[i]
        # 单词反序
        res = list(res.split(" "))[::-1]
        print(res)
        return " ".join(res)

55、NC91 最长上升子序列(三):中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### retrun the longest increasing subsequence
### @param arr int整型一维数组 the array
### @return int整型一维数组
#
import bisect


class Solution:
    def LIS(self, arr):
        # write code here
        arrLen = len(arr)
        if arrLen < 2:
            return arr

        ansArr = [arr[0]]  # 记录某个数字结尾时最长的最长递增子序列,初始化第一个数字
        maxLen = [1]  # 下标i时,最长的递增子序列长度,初始化1

        for a in arr[1:]:
            if a > ansArr[-1]:  # 当前数字大于ansArr最后一个数字,子数组保持递增
                ansArr.append(a)
                maxLen.append(len(ansArr))
            # 当前数字小于等于ansArr最后一个数字,二分查找ansArr中第一个比当前数字大的下标pos
            # 替换ansArr中下标pos的数字为当前数字,更新maxLen,记录当前最长递增子序列长度为:pos + 1(下标+1)
            else:
                pos = bisect.bisect_left(ansArr, a)
                ansArr[pos] = a
                maxLen.append(pos + 1)
        # 找到的ansArr不一定是最终结果,[2,1,5,3,6,4,8,9,7] - > [1, 3, 4, 7, 9] (不是最终结果)
        # [1, 1, 2, 2, 3, 3, 4, 5, 4] 从后往前遍历maxLen,依次找到等于len(arrLen)对应的 arr[i]
        ansLen = len(ansArr)
        for i in range(arrLen - 1, -1, -1):
            if maxLen[i] == ansLen:
                ansArr[ansLen - 1] = arr[i]
                ansLen -= 1
        return ansArr

56、NC92 最长公共子序列(二):中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### longest common subsequence
### @param s1 string字符串 the string
### @param s2 string字符串 the string
### @return string字符串
#
import sys

### 设置递归深度
sys.setrecursionlimit(100000)


class Solution:
    def __init__(self):
        self.x = ""
        self.y = ""

    # 获取最长公共子序列
    def ans(self, i: int, j: int, b: List[List[int]]):
        res = ""
        # 递归终止条件
        if i == 0 or j == 0:
            return res
        # 根据方向,往前递归,然后添加本级字符
        if b[i][j] == 1:
            res = res + self.ans(i - 1, j - 1, b)
            res = res + self.x[i - 1]
        elif b[i][j] == 2:
            res = res + self.ans(i - 1, j, b)
        elif b[i][j] == 3:
            res = res + self.ans(i, j - 1, b)
        return res

    def LCS(self, s1: str, s2: str) -> str:
        # 特殊情况
        if s1 is None or s2 is None:
            return "-1"
        len1 = len(s1)
        len2 = len(s2)
        self.x = s1
        self.y = s2
        # dp[i][j]表示第一个字符串到第i位,第二个字符串到第j位为止的最长公共子序列长度
        dp = [[0] * (len2 + 1) for i in range(len1 + 1)]
        # 动态规划数组相加的方向
        b = [[0] * (len2 + 1) for i in range(len1 + 1)]
        # 遍历两个字符串每个位置求的最长长度
        for i in range(1, len1 + 1):
            for j in range(1, len2 + 1):
                # 遇到两个字符相等
                if s1[i - 1] == s2[j - 1]:
                    # 考虑由二者都向前一位
                    dp[i][j] = dp[i - 1][j - 1] + 1
                    # 来自于左上方
                    b[i][j] = 1
                # 遇到的两个字符不同
                # 左边的选择更大,即第一个字符串后退一位
                elif dp[i - 1][j] > dp[i][j - 1]:
                    dp[i][j] = dp[i - 1][j]
                    # 来自于左方
                    b[i][j] = 2
                # 右边的选择更大,即第二个字符串后退一位
                else:
                    dp[i][j] = dp[i][j - 1]
                    # 来自于上方
                    b[i][j] = 3
        # 获取答案字符串
        res = self.ans(len1, len2, b)
        # 检查答案是否位空
        if res is None or res == "":
            return "-1"
        else:
            return res

57、NC93 设计LRU缓存结构:困难

from collections import OrderedDict


class Solution:
    def __init__(self, capacity: int):
        # write code here
        self.size = capacity
        self.lru_cache = OrderedDict()

    def get(self, key: int) -> int:
        # write code here
        if key in self.lru_cache:
            self.lru_cache.move_to_end(key)
        return self.lru_cache.get(key, -1)

    def set(self, key: int, value: int) -> None:
        # write code here
        if key in self.lru_cache:
            del self.lru_cache[key]
        self.lru_cache[key] = value
        if len(self.lru_cache) > self.size:
            self.lru_cache.popitem(last=False)

58、NC94 设计LFU缓存结构:困难

这道题放弃吧,绝对不会考。

59、NC95 数组中的最长连续子序列:困难

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### max increasing subsequence
### @param arr int整型一维数组 the array
### @return int整型
#
class Solution:
    def MLS(self, arr: List[int]) -> int:
        # write code here
        nums = set(arr)
        res = 0
        for i in nums:
            if i - 1 not in nums:
                j = i + 1
                while j in nums:
                    j += 1
                res = max(res, j - i)
        return res

60、NC96 判断一个链表是否为回文结构:简单

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head ListNode类 the head
### @return bool布尔型
#
class Solution:
    def isPail(self, head: ListNode) -> bool:
        nums = []
        # 将链表元素取出一次放入数组
        while head:
            nums.append(head.val)
            head = head.next
        temp = nums.copy()
        # 准备一个数组承接翻转之后的数组
        temp.reverse()
        for i in range(len(nums)):
            # 正向遍历与反向遍历相同
            if nums[i] != temp[i]:
                return False
        return True

61、NC98 判断t1树中是否有与t2树完全相同的子树:简单

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param root1 TreeNode类
### @param root2 TreeNode类
### @return bool布尔型
#
class Solution:
    def isContains(self, root1, root2):
        # write code here
        if not root1 and not root2:
            return True
        if not root1 or not root2:
            return False
        if root1.val == root2.val:
            return self.isContains(root1.left, root2.left) and self.isContains(
                root1.right, root2.right
            )
        return self.isContains(root1.left, root2) or self.isContains(root1.right, root2)

62、NC100 把字符串转换成整数(atoi):中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param s string字符串
### @return int整型
#
class Solution:
    def StrToInt(self, s: str) -> int:
        res = 0
        index = 0
        # 去掉前导空格
        s = s.strip()
        # 去掉空格就什么都没有了
        n = len(s)
        if s == "":
            return 0
        sign = 1
        # 处理第一个符号是正负号的情况
        if s[index] == "+":
            index += 1
        elif s[index] == "-":
            index += 1
            sign = -1
        # 去掉符号就什么都没有了
        if index == n:
            return 0
        while index < n:
            c = s[index]
            # 后续非法字符,截断
            if c < "0" or c > "9":
                break
            # 转数字
            res = res * 10 + sign * ((int)(c) - (int)("0"))
            index += 1
        # 输出处理越界
        return min(max(res, -(2 ** 31)), 2 ** 31 - 1)

63、NC103 反转字符串:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 反转字符串
### @param str string字符串
### @return string字符串
#
class Solution:
    def solve(self, str: str) -> str:
        # 左右双指针
        left = 0
        right = len(str) - 1
        # 两指针往中间靠
        while left < right:
            l_s = list(str)
            temp = l_s[left]
            l_s[left] = l_s[right]
            # 交换两边字符
            l_s[right] = temp
            str = "".join(l_s)
            left += 1
            right -= 1
        return str

64、NC105 二分查找-II:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 如果目标值存在返回下标,否则返回 -1
### @param nums int整型一维数组
### @param target int整型
### @return int整型
#
class Solution:
    def search(self, nums: List[int], target: int) -> int:
        # write code here
        front, end = 0, len(nums) - 1
        while front <= end:
            temp = (front + end) // 2
            if nums[temp] == target:
                temp1 = temp
                while temp1 >= 0 and nums[temp1] == target:
                    temp1 -= 1
                return temp1 + 1
            elif nums[temp] > target:
                end = temp - 1
            else:
                front = temp + 1
        else:
            return -1

65、NC106 三个数的最大乘积:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 最大乘积
### @param A int整型一维数组
### @return long长整型
#
class Solution:
    def solve(self, A: List[int]) -> int:
        # write code here
        A.sort()
        a1 = A[0] * A[1] * A[-1]
        a2 = A[-1] * A[-2] * A[-3]
        if a1 >= a2:
            return a1
        else:
            return a2

66、NC107 寻找峰值:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param nums int整型一维数组
### @return int整型
#
class Solution:
    def findPeakElement(self, nums: List[int]) -> int:
        left = 0
        right = len(nums) - 1
        # 二分法
        while left < right:
            mid = int((left + right) / 2)
            # 右边是往下,不一定有坡峰
            if nums[mid] > nums[mid + 1]:
                right = mid
            # 右边是往上,一定能找到波峰
            else:
                left = mid + 1
        # 其中一个波峰
        return right

67、NC111 最大数:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 最大数
### @param nums int整型一维数组
### @return string字符串
#


class Solution:
    def solve(self, nums):
        # write code here
        # 将整型的数字转化为字符串
        s = nums
        for i in range(len(nums)):
            s[i] = str(s[i])
        for i in range(len(nums)):
            for j in range(len(nums) - i - 1):
                a = nums[j]
                b = nums[j + 1]
                if int("".join([b, a])) > int("".join([a, b])):
                    s[j], s[j + 1] = s[j + 1], s[j]
        if s[0] == "0":
            return "0"
        return "".join(s)

68、NC113 验证IP地址:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 验证IP地址
### @param IP string字符串 一个IP地址字符串
### @return string字符串
#
class Solution:
    def isIPv4(self, IP: str):
        s = IP.split(".")
        # IPv4必定为4组
        if len(s) != 4:
            return False
        for i in range(len(s)):
            # 不可缺省,有一个分割为零,说明两个点相连
            if len(s[i]) == 0:
                return False
            # 比较数字位数及不为零时不能有前缀零
            if len(s[i]) < 0 or len(s[i]) > 3 or (s[i][0] == "0" and len(s[i]) != 1):
                return False
            # 遍历每个分割字符串,必须为数字
            for j in range(len(s[i])):
                if s[i][j] < "0" or s[i][j] > "9":
                    return False
            # 转化为数字比较,0-255之间
            num = int(s[i])
            if num < 0 or num > 255:
                return False
        return True

    def isIPv6(self, IP: str):
        s = IP.split(":")
        # IPv6必定为8组
        if len(s) != 8:
            return False
        for i in range(len(s)):
            # 每个分割不能缺省,不能超过4位
            if len(s[i]) == 0 or len(s[i]) > 4:
                return False
            for j in range(len(s[i])):
                # 不能出现a-fA-F以外的大小写字符
                if not (
                    s[i][j].isdigit()
                    or s[i][j] >= "a"
                    and s[i][j] <= "f"
                    or s[i][j] >= "A"
                    and s[i][j] <= "F"
                ):
                    return False
        return True

    def solve(self, IP: str) -> str:
        if len(IP) == 0:
            return "Neither"
        if Solution.isIPv4(self, IP):
            return "IPv4"
        elif Solution.isIPv6(self, IP):
            return "IPv6"
        return "Neither"

69、NC116 把数字翻译成字符串:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 解码
### @param nums string字符串 数字串
### @return int整型
#
class Solution:
    def solve(self, nums: str) -> int:
        # 排除0
        if nums == "0":
            return 0
        # 排除只有一种可能的10 和 20
        if nums == "10" or nums == "20":
            return 1
        # 当0的前面不是1或2时,无法译码,0种
        for i in range(1, len(nums)):
            if nums[i] == "0":
                if nums[i - 1] != "1" and nums[i - 1] != "2":
                    return 0
        # 辅助数组初始化为1
        dp = [1 for i in range(len(nums) + 1)]
        for i in range(2, len(nums) + 1):
            # 在11-19,21-26之间的情况
            if (nums[i - 2] == "1" and nums[i - 1] != "0") or (
                nums[i - 2] == "2" and nums[i - 1] > "0" and nums[i - 1] < "7"
            ):
                dp[i] = dp[i - 1] + dp[i - 2]
            else:
                dp[i] = dp[i - 1]
        return dp[len(nums)]

70、NC117 合并二叉树:简单

### class TreeNode:
###     def __init__(self, x):
###         self.val = x
###         self.left = None
###         self.right = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param t1 TreeNode类
### @param t2 TreeNode类
### @return TreeNode类
#
class Solution:
    def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
        # 若只有一个节点返回另一个,两个都为NULL自然返回NULL
        if not t1:
            return t2
        if not t2:
            return t1
        # 根左右的方式递归
        head = TreeNode(t1.val + t2.val)
        head.left = self.mergeTrees(t1.left, t2.left)
        head.right = self.mergeTrees(t1.right, t2.right)
        return head

71、NC119 最小的K个数:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param input int整型一维数组
### @param k int整型
### @return int整型一维数组
#
class Solution:
    def GetLeastNumbers_Solution(self, input: List[int], k: int) -> List[int]:
        res = []
        if len(input) >= k and k != 0:
            import heapq

            # 小根堆,每次输入要乘-1
            pq = []
            for i in range(k):
                # 构建一个k个大小的堆
                heapq.heappush(pq, (-1 * input[i]))
            for i in range(k, len(input)):
                # 较小元素入堆
                if (-1 * pq[0]) > input[i]:
                    heapq.heapreplace(pq, (-1 * input[i]))
            # 堆中元素取出入数组
            for i in range(k):
                res.append(-1 * pq[0])
                heapq.heappop(pq)
        return res

72、NC121 字符串的排列:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param str string字符串
### @return string字符串一维数组
#
class Solution:
    def recursion(self, res: List[str], string: str, temp: str, vis: List[int]):
        # 临时字符串满了加入输出
        if len(temp) == len(string):
            res.append(temp)
            return
        # 遍历所有元素选取一个加入
        for i in range(len(string)):
            # 如果该元素已经被加入了则不需要再加入了
            if vis[i] == 1:
                continue
            if i > 0 and string[i - 1] == string[i] and not vis[i - 1]:
                # 当前的元素str[i]与同一层的前一个元素str[i-1]相同且str[i-1]已经用过了
                continue
            # 标记为使用过
            vis[i] = 1
            # 加入临时字符串
            temp += string[i]
            self.recursion(res, string, temp, vis)
            # 回溯
            vis[i] = 0
            temp = temp[:-1]

    def Permutation(self, str: str) -> List[str]:
        # 先按字典序排序,使重复字符串相邻
        str = "".join((lambda x: (x.sort(), x)[1])(list(str)))
        # 标记每个位置的字符是否被使用过
        vis = [0] * len(str)
        res = []
        temp = ""
        # 递归获取
        self.recursion(res, str, temp, vis)
        return res

73、NC127 最长公共子串:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### longest common substring
### @param str1 string字符串 the string
### @param str2 string字符串 the string
### @return string字符串
#
class Solution:
    def LCS(self, str1: str, str2: str) -> str:
        # 让str1为较长的字符串
        if len(str1) < len(str2):
            str1, str2 = str2, str1
        res = ""
        max_len = 0
        # 遍历str1的长度
        for i in range(len(str1)):
            # 查找是否存在
            if str1[i - max_len : i + 1] in str2:
                res = str1[i - max_len : i + 1]
                max_len += 1
        return res

74、NC128 接雨水问题:困难

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### max water
### @param arr int整型一维数组 the array
### @return long长整型
#
class Solution:
    def maxWater(self, arr: List[int]) -> int:
        # 排除空数组
        if len(arr) == 0:
            return 0
        res = 0
        # 左右双指针
        left = 0
        right = len(arr) - 1
        # 中间区域的边界高度
        maxL = 0
        maxR = 0
        # 直到左右指针相遇
        while left < right:
            # 每次维护往中间的最大边界
            maxL = max(maxL, arr[left])
            maxR = max(maxR, arr[right])
            # 较短的边界确定该格子的水量
            if maxR > maxL:
                res += maxL - arr[left]
                left += 1
            else:
                res += maxR - arr[right]
                right -= 1
        return res

75、NC132 环形链表的约瑟夫问题:中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param n int整型
### @param m int整型
### @return int整型
#
class Solution:
    def ysf(self, n, m):
        ls = list(range(1, n + 1))
        pos = 0
        for _ in range(n - 1):
            pos = (pos + m - 1) % len(ls)
            del ls[pos]
        return ls[0]

76、NC133 链表的奇偶重排:中等

### class ListNode:
###     def __init__(self, x):
###         self.val = x
###         self.next = None
#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param head ListNode类
### @return ListNode类
#
class Solution:
    def oddEvenList(self, head: ListNode) -> ListNode:
        # 如果链表为空,不用重排
        if head == None:
            return head
        # even开头指向第二个节点,可能为空
        even = head.next
        # odd开头指向第一个节点
        odd = head
        # 指向even开头
        evenhead = even
        while even and even.next:
            # odd连接even的后一个,即奇数位
            odd.next = even.next
            # odd进入后一个奇数位
            odd = odd.next
            # even连接后一个奇数的后一位,即偶数位
            even.next = odd.next
            # even进入后一个偶数位
            even = even.next
        # even整体接在odd后面
        odd.next = evenhead
        return head

77、NC134 买卖股票的最好时机(二):中等

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 计算最大收益
### @param prices int整型一维数组 股票每一天的价格
### @return int整型
#
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        # dp[i][0]表示某一天不持股到该天为止的最大收益,dp[i][1]表示某天持股,到该天为止的最大收益
        dp = [[0] * 2 for i in range(n)]
        # 第一天不持股,总收益为0
        dp[0][0] = 0
        # 第一天持股,总收益为减去该天的股价
        dp[0][1] = -prices[0]
        # 遍历后续每天,状态转移
        for i in range(1, n):
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i])
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
        # 最后一天不持股,到该天为止的最大收益
        return dp[n - 1][0]

78、NC140 排序:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
### 将给定数组排序
### @param arr int整型一维数组 待排序的数组
### @return int整型一维数组
#
class Solution:
    def MySort(self, arr: List[int]) -> List[int]:
        # write code here
        for i in range(len(arr)):
            for j in range(i + 1, len(arr)):
                if arr[j] < arr[i]:
                    arr[i], arr[j] = arr[j], arr[i]
        return arr

79、NC141 判断是否为回文字符串:简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param str string字符串 待判断的字符串
### @return bool布尔型
#
class Solution:
    def judge(self, str: str) -> bool:
        # 首指针
        left = 0
        # 尾指针
        right = len(str) - 1
        # 首尾往中间靠
        while left < right:
            # 比较前后是否相同
            if str[left] != str[right]:
                return False
            left += 1
            right -= 1
        return True

80、NC156 数组中只出现一次的数(其它数出现k次):简单

#
### 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
### @param arr int整型一维数组
### @param k int整型
### @return int整型
#
class Solution:
    def foundOnceNumber(self, arr, k):
        arr.sort()
        arrs = arr[1 : len(arr) + 1 : k]
        return sum(arr) - sum(arrs * k)

欢迎加入交流群,参与话题讨论: